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Abstract
Due to Fortuin and Kastelyin the q state Potts model has a representation as a
sum over random graphs, generalizing the Potts model to arbitrary q is based on
this representation. A key element of the random cluster representation is the
combinatorial factor �G(C, E), which is the number of ways to form C distinct
clusters, consisting of totally E edges. We have devised a method to calculate
�G(C, E) from Monte Carlo simulations.

PACS numbers: 05.10.Ln, 05.50.+q, 64.60.Cn, 64.10.+h

1. Introduction

The Potts model [1] is one of the most studied models in statistical physics. The traditional
representation of the model is in terms of the Hamiltonian

H = −J
∑
〈i,j〉

δ(σi, σj ), (1)

where the spins σi are integer values σi ∈ [1 . . . q], the sum 〈i, j 〉 is over nearest neighbours.
The q is a parameter of the model. The model is typically defined on a regular lattice in d
dimensions, but can in general be defined on any graph.

For d � 2 the model sustains a order-disorder transition, in d = 2 the critical coupling
is βc = ln(1 +

√
q). For β > βc the q-fold permutation symmetry of equation (1) is broken,

and one of the q different groundstates has been singled out. For q = 2 the model is the
familiar Ising model, which has a second-order transition, but with increasing q the excited
states have relatively more entropy and for q > qc the transition is first order. For d = 2 the
phase transition changes order at qc = 4 [2, 3], for d = 3 the exact value is not known, but
the most recent estimate based on Monte Carlo simulations is qc ≈ 2.35 [4].

The Hamiltonian equation (1) is only defined for integer q; however, due to an elegant
transformation by Fortuin and Kastelyn (KF) the partition function of the q state Potts
model can be written as a correlated percolation problem, the so-called random cluster (RC)
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Figure 1. The sites of 5×5 lattice, and links connecting some of the sites. Together these sites and
links constitute a graph. This particular graph has VG = 25, EG = 20, six connected components
(CG = 6) and a rank r(G) = VG − CG = 19.

model [5]. In the RC representation q enters as an ordinary variable, and can attain any scalar
value. Apart from extrapolation/interpolation from integer q results, all (numerical) studies
of the non-integer q properties of the Potts model are based on the RC representation; this
also applies to the current paper. Properties of the Potts model with non-integer q have been
extensively studied using transfer matrix [6] techniques. Recently also MC simulations have
been used. The latter come in two categories; either a technique is based on the RC measure
to simulate directly at an arbitrary q [4, 7, 8], or alternatively the results are reweighted to
arbitrary q after the simulation is complete [7, 9].

The rest of this paper is organized as follows. In section 2 we introduce some key elements
of graph theory, and how concepts from graph theory can be applied in statistical physics, in
particular to the Potts model. In section 3 we introduce and describe an algorithm which can
be used to ‘reweight’ Potts model simulations to arbitrary q. Section 4 is devoted to results,
both to show the correctness of the approach and also to study real q properties which are not
easily studied by ordinary MC simulations.

2. Graph theory and the Potts model

An (undirected) graph G is a collection of vertices V (G), along with a set of edges E(G)

connecting the vertices [10]. A subgraph G′ ∈ G is a collection of vertices and edges such that
V (G′) ∈ V (G) and E(G′) ∈ E(G). The rank of a graph is denoted by r(G) and given by

r(G) = |V (G)| − C(G), (2)

where |V (G)| is the number of vertices and C(G) is the number of connected components.
Observe that also isolated single vertices constitute connected components when evaluating
the rank of a graph. Figure 1 shows a simple graph and illustrates the necessary concepts.
From now on we will use the symbols EG, CG and VG to denote the number of edges, clusters
and vertices in a graph G; when there is no ambiguity we will omit the index G.

By assigning scalar properties to sites and bonds one can define different graph
polynomials. One of the most general graph polynomials is the Tutte or di-chromatic
polynomal TG(x, y) [11, 12]:

TG(x, y) =
∑

E∈E(G)

(x − 1)r(E)−r(G)(y − 1)E−r(G). (3)

The sum in equation (3) is over all edge configurations of the graph G (i.e. spanning subgraphs).
Here x is a scalar property assigned to the vertex set, and y a property assigned to the edges;
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as indicated in equation (3), we will only consider the situation of spatially constant y, but the
general definition of the Tutte polynomial allows for a set {y} of edge properties. Many other
polynomials can be found as suitably rescaled evaluations of the Tutte polynomial [13]:

RG(p) = (1 − p)E−V+1pV−1TG

(
1,

1

1 − p

)
(4)

PG(q) = (−1)r(E)qCTG(1 − q, 0) (5)

ZG(q, v) = qvV−1(v + 1)−ETG

(q + v

v
, v + 1

)
, v = p

1 − p
= eβJ − 1. (6)

RG(p) is the reliability polynomial, closely related to the (bond) percolation problem. PG(q) is
the chromatic polynomial, and denotes the number of ways the vertices in G can be colourized
with q different colours, so that no adjacent vertices share the same colour. The chromatic
polynomial coincides with the T → 0 limit of the partition function of the anti-ferromagnetic
Potts model. Finally, Z(q, v) is the partition function of the q state Potts model. Observe the
quantity v in equation (6); in this context this is the most convenient temperature variable.

The FK transformation is the key to identify Z(q, v) with the Tutte Polynomial [5]. The
actual transformtion is in terms of the complete partition function, hence it is not possible
to identify a spin state with a corresponding RC state uniquely; see, however, [14] for an
exposition in terms of a mixed bond-spin model which elucidates the connection. ZRC(p, q)

is a function of two variables: a probability p to occupy an edge, and a q, where ln q resembles
a cluster entropy. The RC partition function is built up as follows: (1) each configuration
E′(G) of edges gets a ‘Boltzmann’-weight pE ′

(1 − p)E−E ′
, (2) the weight is multiplied by an

entropic factor qC ′
, (3) all configurations E′(G) are summed over. This finally gives the RC

partition function

ZRC(q, p) =
∑

E′(G)∈E(G)

pE ′
(1 − p)E−E ′

qC =
V∑

C=1

E∑
E ′=0

�G(C, E)pE(1 − p)E−E ′

︸ ︷︷ ︸
aC(p)

qC . (7)

The p in equation (7) is the probability to occupy an edge, for the RC model this is an arbitrary
number; however, to make contact with the q-state Potts model at coupling β, we must have
p = 1− e−βJ . As indicated in equation (7), the partition function can be seen as a polynomial
in q, with p dependent coeffiecients. In section 4.4 we will use this to determine the zeros of
the partition function in the complex q plane.

Using the combinatorial factor �G(C, E) to express the sum is the key element in
equation (7). This factor is simply the number of ways to form C connected components
with E, on the underlying graph G. This is a purely combinatorial/geometric property which
can in principle be calculated without any reference to a particular model of statistical physics.
On the other hand, all physical properties are contained in �G(C, E). Equation (7) also
highlights that the Potts model has a common structure independent of q, even though the
physical properties vary significantly with q. In addition to facilitating the study of the Potts
model for arbitrary q, the FK representation also serves as the theoretical underpinning of the
Swendsen–Wang algorithm for spin models [14, 15].

An important topic in computer science is a formal demarcation of tractable and intractable
problems. The so-called #P complete problems are counting problems which are essentially
intractable. Obtaining the partition function of (discrete) system belongs to this category
[4, 16]. Due to this intractability good approximative techniques is essential; the Monte Carlo
technique is one such approach. Also in computer science the use of Monte Carlo techniques
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to approach NP and #P complete problems has been popular; see, e.g., [17]. Computer
scientists Jerrum and Sinclair have devised efficient Monte Carlo algorithms (FPRAS) to
determine the partition functions of both 2D monomer-dimer system, and the 2D Ising model
[18, 19]. Hence the study of the RC and related problems is of interest to scientists from
widely different fields.

3. Algorithm

The probability P(ε) to find a system in a state with energy ε is proportional to g(ε) e−βε ,
where g(ε) is the density of states at energy ε. That P(ε) can be written in this manner is
the foundation of ordinary ε − β reweigting [20]. In the formulation equation (7) (p, E) and
(q, C) are ‘conjugate’ variable pairs; alas, �G(C, E) can be used to reweight to arbitrary q
and p; from now on we will mostly use β in the text, but it should be understood that the
relation p = 1 − e−βJ applies throughout. In the remainder of this section we will present
an algorithm to estimate �G(C, E) from simulations at different p and q. An algorithm based
on the same principle was presented by Weigel et al in [9], and just recently Hartmann has
presented an algorithm based only on (q, C) reweighting [4].

The algorithm presented here is general, and will apply to any graph. However, for ease
of notation we have specialized to a two-dimensional square lattice with a total of N = L×L

sites and 2N edges. The Gibbs probability to find any state with C components and E edges
is given by [13]:

PG(C, E) = �G(C, E)pEq2N−EqC

ZG(q, β)
. (8)

To estimate �G(C, E) we need to generate states distributed according to equation (8).
We have done this by using the Swendsen–Wang [15] algorithm on the q state Potts model,
with integer q. However, one could equally well have used an algorithm generating RC states
directly [7, 8], or alternatively a combination. During the simulation at µ = (q, β) a histogram
hµ(C, E) is collected. From the histogram hµ0(C, E) we can in principle estimate �G(C, E)

from equation (8),

�̂µ0(C, E) = eξµ0 hµ0(C, E)p
−E
0 q

−(2N−E)
0 q

−C
0 , (9)

where ξµ0 is an (undetermined) normalization constant. �G(C, E) is independent of µ;
however, the estimator in equation (9) has been given index µ0 to indicate that it is based
on results sampled at these couplings. The estimator equation (9) is formally correct, but only
applicable in a narrow range around the mean values 〈C〉µ0 and 〈E〉µ0 . By combining results
obtained at different β and q we can get an estimate for �G(C, E) which is valid for a wide
range of C and E values. A series of N histograms obtained at couplings µ1, µ2, . . . , µN can
be combined as

�̂G(C, E) =
N∑
i

wi(C, E) · �̂µi
(C, E), (10)

where the weight factor wi(C, E) is given by

wi(C, E) = hµi
(C, E)∑

k hµk
(C, E)

. (11)
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The normalization constants ξi, i > 1 are determined by maximizing, the (weighted)
overlap between (the logarithm of) the estimates �̂µi

(C, E). Mathematically this amounts to
minimizing

χ2 =
∑

i

∑
j>i

∑
C,E

hµi
(C, E)hµj

(C, E)

×


(ξi + ln hµi

(C, E) − C ln qi) − (ξj + ln hµj
(C, E) − C ln qj )︸ ︷︷ ︸

ln �̂µi
−ln �̂µj




2

, (12)

with ξ1 initially fixed at an arbitrary value. The final normalization constant ξ1 is determined
by the overall normalization∑

C,E ′
�G(C, E′) = 2E . (13)

The actual solution of the minimization problem equation (12) is found as the solution of a
system of linear equations. As long as all the histograms hµi

(C, E) have finite overlap with at
least one other histogram hµj

(C, E) the solution will be found. The method is a generalization
of an existing algorithm to determine the density of states g(ε) [21, 22].

Due to the nonlinear nature of the algorithm it is difficult to calculate errors by the
use of error-propagation. Furthermore, the estimation of �G(C, E) is quite time consuming;
hence computer-intensive methods like Jack-Knife and Bootstrap are not very suitable. In the
current paper error estimates have been calculated by comparing the results from independent
simulations.

4. Results

4.1. Basic thermodynamic results

In this section, we will show how simulations performed at one value q1 can be reweighted to
another q2 �= q1. Figure 2 shows thermodynamics for a q = 4 Potts model. The solid line is
data obtained at q = 4, and the symbols represent results reweighted from q = 2 and q = 8,
respectively.

4.2. The average trajectory in clusters–links space

In the random cluster formalism the state of the system is given by C and E, and it is interesting
to see how these quantities evolve when the Potts model parameters β and q are varied. For a
fixed value of E the conditional probability P(C|E) is independent of β; hence we can easily
plot the mean path the system will follow in (C, E) space. In figure 3 we show the conditional
mean

〈C|E〉 =
∑

C C · �(C, E)qC∑
C �(C, E)qC

, (14)

along with the contours of P(C, E) at the critical coupling, for two different values of q. As
we can see from figure 3, the q behaviour of C and E can conveniently be divided in three
regions: a low T region where 〈C|E〉 ≈ 1 quite independent of E, a high T region where
〈C|E〉 � N − E and an intermediate region containing the critical point. It is only in the
intermediate region there is significant q dependence.
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Figure 2. This figure shows from top to bottom free energy, internal energy and spesific heat
for the q = 4 Potts model, system size is 16 × 16. The solid line shows result obtained from a
simulation at q = 4, the symbols show results ‘reweighted’ from q = 2 and q = 8 respectively.

Probability distribution P(C,|E|) for Q=2 and Q=8 at the critical point

C

|E
|

0 50 100 150 200 250

0
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Figure 3. Contour plot of the density P(C, E) at the critical point, for q = 2 and q = 8 for a
16 × 16 lattice. The dashed lines show 〈C|E〉, which corresponds to the path followed in C, E
space when temperature is varied.

The contours in figure 3 show the probability density P(C, E) at the critical point, for
q = 2 and q = 8. The q ‘reweighting’ has similar limitations as ordinary thermal reweighting;
the statistics is best at the original q value, and cannot be extended to the regions of (C, E)

space which have not been sampled. As we can see from figure 3 the overlap between the
q = 2 and q = 8 results is very small; hence reweighting between these two q values would
give unreliable results.
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Figure 4. The left figure shows the conditinal distribution P(c|e) at e = (1 − 1/(1 +
√

q))/L2, i.e.
the critical link density, for the q = 3 model. The right figure shows the width of the distribution
P(c|e) as a function of L, all the curves show a L−1 decay. The curves for q � 3 have been shifted
for clarity.

From figure 3 we see that the fluctuations are quite asymetric; they are much larger along
the direction given by the mean path equation (14) than orthogonal to it. The conditional
distribution function

P(C|E) = �(C, E)qC∑
C �(C, E)qC

(15)

is well described by a Gaussian with width σE(q). The width scales with the number of
sites as N1/2; hence the relative fluctuations in the number of clusters scales as N−1/2 and
consequently the system will follow an increasingly well-defined line in (C, E) space when
the system size increases. Figure 4 shows the distribution of the cluster density c = C/N

for a given link density e = E/N , and finite size scaling of the width of this distribution,
σe(q) = σE(q)/N .

In the RC model each cluster can be in q different configurations; hence we get an additive
entropy contribution of ln q from every cluster. Consequently, we see that for a fixed number
of links the average number of clusters will increase with q. On the other hand, larger amount
of entropy per cluster, means that for high q entropy will dominate the competition between
internal energy and entropy at a lower number of clusters, and consequently at the critical
point 〈C〉 decreases with increasing q. These points are illustrated in figure 5.

4.3. Evaluation of the Tutte polonymial

The Tutte polynomial can be defined in terms of a recursive definition [13], which immediately
leads to a simple and exact algorithm for computation of TG(x, y). However, this algorithm
has exponential complexity, and is clearly not feasible for anything but very small graphs.
Due to its importance in many different areas of mathematics and computer science, this
has led to a large effort to find efficient approximate algorithms for evaluation of the Tutte
polynomial [23].

Using the algorithm presented here we can also estimate the Tutte polynomials; in figure 6
we show the reliability polynomial and the Chromatic polynomial. With the current approach
the running time to determine the Tutte polynomial is governed by the running time of the MC
algorithm, and at least for q � 4 the Swendsen–Wang algorithm is rapidly mixing [24].

When the arguments x, y of the Tutte polynomial move a long way away from the values
used when sampling, the results become unreliable; consult equation (6) to see how x and
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Figure 5. The mean number density of clusters as a function of q, for a fixed density of links and
at the (q dependant) critical link density. The results in the figure are from a 16 × 16 lattice.
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Figure 6. The reliability polynomial equation (4) and chromatic polynomial equation (5) for a
3 × 3 lattice. The solid lines are exact results from the computer algebra system Maple, and the
points come from our simulations. The very small system size considered is to limit the run-time
of Maple.

y are related to the parameters q and β of the Potts model. In particular for x < 1 and/or
y < 1, the evaluation of T (x, y) is difficult, because in these regions the polynomial terms are
oscillating and inaccurate coefficients lead to large relative errors.

4.4. Zeros in the complex q plane

The formulation of the partition function as a polynomial in q allows for quite easy evaluation
of the zeros of the partition function in the complex q plane. The properties of the complex q
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Figure 7. The roots in the complex q plane of the partition function Z(v, q) at couplings v = √
3

(top) and v = √
5 (bottom). We observe that the zeros close in on the critical q values of 3 and 5.

zeros have been investigated both analytically and numerically [25]. According to the Yang–
Lee view of critical phenomena, the critical point is characterized by zeros in the complex β

plane pinching the real axis. The phase transition in the random cluster model can be driven
by both β and q; we should therefore see the same pinching of the real q axis.

The critical coupling is given by βcJ = ln(1 +
√

q), alternatively we find that for a fixed
β the critical q is given by

qc = (eβJ − 1)2 = v2. (16)

For the current discussion the temperature variable v, first introduced in equation (6), will be
the most convenient. Plotting the zeros of Z(v, q), we expect the zeros to pinch the real q axis
close to the qc given by equation (16); figure 7 shows the distribution of zeros in the complex
q plane for two different couplings.

If we denote the zero closest to qc with qc(L), we find that qc(L) converges towards qc

with increasing system size. To determine which zero is indeed the ‘critical’ one we have
measured the distance d(qi, qc) using both the ordinary metric d2(x, y) = |x − y| and also
d1(x, y) = |Im(x) − Im(y)|. For v2 � 3.0 the two methods select the same zero, whereas for
v2 � 3.0 different zeros are selected, and the real part of the zero selected by d2 jumps about
randomly. Figure 8 shows finite size scaling plots of the |Im(q)| (as determined by using d1)
for the zero closest to the real q axis. This should scale as

|Im(q)| ∼ L− 1
ν . (17)

For q = 2 and q = 3, this gives ν ≈ 0.992(7) and ν ≈ 0.863(7) which agree reasonably well
with the exact values of 1 and 5/6 ≈ 0.8333 . . . . For q = 4 we get ν ≈ 0.77(3), which is well
above the exact value of 2/3 + logarithmic corrections. If we assume an effective exponent
for the first-order transition at q = 5 we would expect ν = 1/2, whereas the estimated value
is ν = 0.77(6).
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Figure 9. The radius Rq for a two dimensional square lattice, i.e. r = 4. The solid line is
f (v) ∼ a · v and the dashed line is g(v) ∼ a + b · v2.

The reason that the quality of the ν estimates deteriorate with increasing q is probably that
the slope of the curve βc(q) is reduced with increasing q. When the transition is driven by q the
critical point is approached more and more tangentially. It seems reasonable that this makes a
precise determination of the critical properties progressively more difficult. Furthermore, the
model has limiting behaviour at q = 4, with strong corrections to scaling; consequently the
critical properties are notoriously difficult to determine numerically at q = 4 [26].

The zeros are found using the MPSolve [27] package. To determine the roots of Z(v, q) in
the complex q plane is an ill-posed problem. Firstly, the coefficeints aC(p) (see equation (7))
vary over a wide range; secondly, finite sampling statistics adds to the problem. In particular,
the states with C → N are typically not sampled at all. For independent simulations the pattern
of zeros differs significantly from case to case; however, the location of the zero qc(L) shows
much less fluctuations. The results in figure 8 are the total of ten independent simulations,
and as we see the error bars are very small.
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In a large paper by Alan Sokal [25] it is shown that the complex q zeros of the partition
function Z(v, q) for |1 + v| � 1 are all located within a circle given by the maximal degree
of the graph. The restriction |1 + v| � 1 corresponds to the anti-ferromagnetic Potts model,
which is not what we have considered in this paper. If the restriction |1 + v| � 1 is relaxed the
radius is found to scale as (for spatially constant v)

Rq ∼ max[v, vr/2], (18)

where r is the maximum degree of the graph, i.e. the maximum number of edges incident on
any one vertex. For an ordinary cubic lattice in two dimensions we have r = 4; hence we
expect to see a crossover from v to v2 scaling around v = 1. Figure 9 shows the radius Rq as
a function of v.

5. Conclusion

We have shown that the non-trivial information of the Potts model is contained in the density
�G(C, E), and this is independent of q. �G(C, E) is purely a combinatorial/geometric property
of the underlying lattice, emphasizing the connection between these concepts and critical
phenomena. Furthermore, we have devised an algorithm to estimate �G(C, E) from Monte
Carlo simulations, and used this to study various properties of the Potts/random cluster model.
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[6] Blöte H W J and Nightingale M P 1982 Critical behaviour of the two-dimensional Potts model with a continuous

number of states; a finite size scaling analysis Physica A 112 405
[7] Gliozzi F 2002 Simulation of Potts models with real q and no critical slowing down Phys. Rev. E 66 016115
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